The substitution of arene by alkenes in linear trinuclear palladium complex $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)_{2}$. X-ray structure of $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHPh}\right)_{2}$ and $\mathrm{Pd}_{4}(\mu-\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHPh}\right)_{4}$

Roman E. Podobedov ${ }^{\text {a,b,* }}$, Tatiana A. Stromnova ${ }^{\text {a,b }}$, Andrei V. Churakov ${ }^{\text {a }}$, Lyudmila G. Kuzmina ${ }^{\text {a }}$, Inessa A. Efimenko ${ }^{\text {a }}$
${ }^{\text {a }}$ N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian Federation
${ }^{\mathrm{b}}$ M. V. Lomonosov Moscow State Academy of Fine Chemical Technology, 86 prosp. Vernadskogo, 119571 Moscow, Russian Federation

A R T I C L E I N F O

Article history:

Received 7 April 2010
Received in revised form
11 May 2010
Accepted 16 May 2010
Available online 24 May 2010

Keywords:

Palladium cluster
Nitrosyl carboxylate
Alkene
Substitution of arene
X-ray structure

Abstract

An interaction of $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)_{2}(\mathbf{I})$ with alkenes has been studied. A replacement of η^{2}-coordinated arene by various olefins has been found to result in complexes of different nuclearity, $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{L}\right)_{2} \quad\left(\mathrm{~L}=\mathrm{Me}_{3} \mathrm{CCH}=\mathrm{CH}_{2} \quad(\mathrm{IIII}), \quad \mathrm{CH}_{2} \mathrm{CHPh}(\mathbf{I V})\right), \quad \mathrm{Pd}_{4}(\mu-\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CHPh}\right)_{4}(\mathbf{V})$. Complexes IV and \mathbf{V} have been characterized by an X-ray diffraction analysis. Molecule IV is constituted of a linear trinuclear metal core bearing η^{2}-coordinated molecules of styrene, terminal nitrosyl and bridging carboxylate groups, whereas, complex \mathbf{V} has a tetrahedral core, with η^{2}-coordinated styrene molecules and half-bridging nitrosyl and carboxylate groups. Complex \mathbf{V} represents a new type of nitrosyl carboxylate tetrahedral palladium cluster.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Complexes of transition metals containing η^{6}-coordinated benzene molecule or its derivatives are widely known, whereas, the examples of complexes with η^{2} - or η^{3}-coordinated molecule of arenes are few in number. Only several palladium complexes of this kind that may be divided into two groups are described.

The first group consists of the complexes with $\mathrm{Pd}-\mathrm{Pd}$ unit sandwiched between two arene molecules. These dimeric complexes have a total composition $\mathrm{Pd}_{2}(\text { arene })_{2} \mathrm{X}_{2}$, with the anionic ligands occupying the axial positions. In the case when the $\mathrm{Pd}-\mathrm{Pd}$ bond is parallel to the planes of arene rings, each of the Pd atoms is bounded to three carbon atoms of both arene rings (arene $=$ benzene, $\mathrm{X}=\mathrm{Al}_{2} \mathrm{Cl}_{7}$) [1,2]. In the case when the $\mathrm{Pd}-\mathrm{Pd}$ bond is non-parallel to the planes of arene rings, each Pd atom is bounded to two or three carbon atoms of each arene ring (arene $=$ benzene, $\mathrm{X}=\mathrm{GaCl}_{4}, \mathrm{Ga}_{2} \mathrm{Cl}_{7}$ or GaBr_{4}; arene $=$ toluene, $\mathrm{X}=\mathrm{GaCl}_{4}$ or GaBr_{4}; arene $=p$-xylene, $\mathrm{X}=\mathrm{GaCl}_{4}$ or $\left.\mathrm{GaBr}_{4}\right)[3,4]$.

[^0]The palladium complexes earlier synthesized by us, with η^{2} coordinated arene molecule [5-7] belong to the second group. These substances are of the common composition $\mathrm{Pd}_{3}(\mathrm{NO})_{2}(\mu-$ $\left.\mathrm{RCO}_{2}\right)_{4}\left(\eta^{2} \text {-arene }\right)_{2}\left(\mathrm{R}=\mathrm{CF}_{3}\right.$, arene $=$ toluene $(\mathbf{I}), \mathrm{R}=\mathrm{CCl}_{3}$, arene $=$ benzene ($\mathbf{I I}$)). Both molecules have a trinuclear linear metal core, with the $\mathrm{Pd}-\mathrm{Pd}-\mathrm{Pd}$ angle equal to 180° in I and II (Fig. 1).

The arene molecules are linked to each terminal Pd atoms through a couple of carbon atoms. The plane of each arene molecule is perpendicular to the nearest $\mathrm{Pd}-(\mathrm{OC}(\mathrm{R}) \mathrm{O})_{2}-\mathrm{Pd}$ plane. Two $\mathrm{Pd}-\mathrm{C}$ bonds are nearly equal (average distance is $2.417 \AA$ for \mathbf{I} and $2.420 \AA$ for II). The rest of the $\mathrm{Pd}-\mathrm{C}$ distances with the arene molecules are much longer and vary within 3.096-3.691 Å for I and $3.175-3.732 \AA$ Å for II. Therefore, the coordination of arene molecules

Fig. 1. Structure of complexes $\mathbf{I}\left(R=\mathrm{CF}_{3}, X=\mathrm{Me}\right)$ and $\mathbf{I I}\left(R=\mathrm{CCl}_{3}, X=H\right)$.

Fig. 2. The molecular structure of IV. Only one independent molecule is presented. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are shown at the 50% probability level. Dashed lines denote short intramolecular Pd...Pd contacts (3.0195(5) and 3.1686(5) A).
is best described as η^{2} type interaction. The phenyl rings are planar and shown no significant elongations of the coordinated $\mathrm{C}-\mathrm{C}$ bond. It was found that in complex \mathbf{I}, the coordinated toluene molecule is not replaced even on recrystallization from non-aromatic solvents. Unlike complex I, complex II decomposes under the same conditions. Thus the $\mathrm{Pd}\left(\mu-\mathrm{RCO}_{2}\right)_{2} \operatorname{Pd}\left(\mu-\mathrm{RCO}_{2}\right)_{2} \mathrm{Pd}$ fragment in complex I is stable enough to remain under conditions of the replacement of η^{2} coordinated toluene molecule to another ligand.

This Pd_{3}-fragment is a well-known building block for a design of oligomeric palladium carboxylate complexes. In these complexes three palladium atoms form a $\mathrm{Pd}\left(\mu-\mathrm{RCO}_{2}\right)_{2} \mathrm{Pd}\left(\mu-\mathrm{RCO}_{2}\right)_{2} \mathrm{Pd}$ chain ($\mathrm{R}=\mathrm{Me}, \mathrm{CCl}_{3}, \mathrm{CF}_{3}$), in which the terminal palladium atoms are coordinated by ancillary ligands. In such linear molecules, a distortion of the square-planar coordination around the central metal atom is far less pronounced than in the complexes with the bent metal chain. Only a few compounds with the linear metal chain are known [8]. The $\mathrm{Pd}-\mathrm{Pd}$ distances in these compounds range within $2.86-3.08 \AA$ depending on the nature of the substituent R in the carboxylate group and the ancillary ligand. In this paper we report interactions of trinuclear palladium carboxylate complex I with alkenes.

2. Results and discussion

2.1. Reaction of I with ethylene and propylene

A treatment of I in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with ethylene or propylene for some hours at ambient temperature leads to the complete decomposition of I to palladium black. The products of alkene oxidation (acetaldehyde in the case of ethylene and propionaldehyde in the
case of propylene) in solution were recorded by the GC-MS (together with vinyltrifluoroacetate and allyltrifluoroacetate). Our attempts to separate any Pd-containing compounds from the reaction mixtures failed.

2.2. Reaction of I with neohexene (3,3-dimethyl-1-butene)

An addition of solution of neohexene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the solution of I in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ leads to the formation of a new complex of the composition $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{Me}_{3} \mathrm{CCH}=\mathrm{CH}_{2}\right)_{2}$ (III). The IR spectrum of III displays the presence of terminal NO-groups (ν $(\mathrm{NO})=1680 \mathrm{~cm}^{-1}$). This value is significantly lower than that in I ($1730 \mathrm{~cm}^{-1}$), apparently, due to the higher electron donor capability of neohexene as compared with that of toluene. The ${ }^{1} \mathrm{H}$ NMR spectrum of III contains singlet ($\delta=1.13 \mathrm{ppm}$) from protons of ${ }^{t} \mathrm{Bu}-$ group, doublet ($\delta=4.90 \mathrm{ppm}, \mathrm{Me}_{3} \mathrm{CCH}=\mathrm{CH}_{2}$), and multiplet ($\delta=5.90 \mathrm{ppm}, \mathrm{Me}_{3} \mathrm{CCH}=\mathrm{CH}_{2}$).

2.3. Reaction of I with styrene

The first stage of the interaction of styrene with \mathbf{I} is analogous to the reaction with neohexene. It results in fast (for 1 h) formation of a new complex $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{CHPh}\right)_{2}$ (IV). As in the case of complex I, the IR spectrum of IV contains the band at $1720 \mathrm{~cm}^{-1}$ attributed to the terminal NO-groups.

The structure of IV was confirmed by the X-ray diffraction analysis (see Fig. 2). The asymmetric unit contains two crystallographically independent molecules with the close geometric parameters. The molecules are situated at the symmetry centres and

Table 1
Selected bond lengths ($\left(\AA\right.$) and angles (${ }^{\circ}$) for IV. ${ }^{\text {a }}$

$\mathrm{Pd}(1)-\mathrm{Pd}(2)$	3.0195(5)	$\mathrm{Pd}(3)-\mathrm{Pd}(4)$	3.1686(5)
$\mathrm{Pd}(2)-\mathrm{O}(12)$	1.995(3)	$\mathrm{Pd}(3)-\mathrm{O}(31)$	2.248(3)
$\mathrm{Pd}(2)-\mathrm{O}(22)$	2.012(3)	$\mathrm{Pd}(3)-\mathrm{O}(41)$	2.265(3)
$\mathrm{Pd}(1)-\mathrm{O}(11)$	2.285(3)	$\mathrm{Pd}(4)-\mathrm{O}(32)$	1.997(3)
$\mathrm{Pd}(1)-\mathrm{O}(21)$	2.210(3)	$\mathrm{Pd}(4)-\mathrm{O}(42)$	2.000(3)
$\operatorname{Pd}(1)-C(13)$	2.232(5)	$\mathrm{Pd}(3)-\mathrm{C}(33)$	2.221(5)
$\operatorname{Pd}(1)-\mathrm{C}(14)$	2.381(5)	$\mathrm{Pd}(3)-\mathrm{C}(34)$	2.343(5)
$\mathrm{Pd}(1)-\mathrm{N}(1)$	1.938(5)	$\mathrm{Pd}(3)-\mathrm{N}(2)$	1.910(5)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.362(7)	C(33)-C(34)	1.353(7)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.478(7)	$\mathrm{C}(34)-\mathrm{C}(35)$	1.473(7)
$\mathrm{N}(1)-\mathrm{O}(1)$	1.147(7)	$\mathrm{N}(2)-\mathrm{O}(3)^{\text {b }}$	1.068(9)
		$\mathrm{N}(2)-\mathrm{O}(4)^{\text {b }}$	1.129(13)
$\mathrm{Pd}(1)-\mathrm{N}(1)-\mathrm{O}(1)$	112.8(5)	$\mathrm{Pd}(3)-\mathrm{N}(2)-\mathrm{O}(3)^{\mathrm{b}}$	132.9(6)
		$\mathrm{Pd}(3)-\mathrm{N}(2)-\mathrm{O}(4)^{\text {b }}$	118.8(8)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	126.6(5)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	126.0(5)

a Two independent molecules.
${ }^{\mathrm{b}}$ Major and minor components of disorder.
have strictly linear trinuclear metal core. Both terminal Pd atoms are linked to the central one by a couple of bridging carboxylate ligands. Two $\mathrm{Pd}-(\mathrm{OC}(\mathrm{R}) \mathrm{O})_{2}-\mathrm{Pd}$ fragments are virtually orthogonal. The $\mathrm{Pd}-\mathrm{Pd}$ distances are equal to $3.0195(5)$ and 3.1686(5) Å. These values lie within the range $2.821-3.428$ Å reported for $\mathrm{Pd}_{2}\left(\mu-\mathrm{RCO}_{2}\right)_{2}$ units in the Cambridge Structural Database [9] (ver. 5.30, 156 refcodes, 243 fragments). In both molecules, the central Pd atom has a square-planar coordination environment, with the $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$

Scheme 1. Interaction I with alkenes.
angles varying within a narrow range $88.6(1)-91.4(1)^{\circ}$ (Table 1). To the best of our knowledge, the linear arrangement of three Pd atoms is rather rare. This was previously observed in a few palladium carboxylates I [6], $\left[\mathrm{Pd}_{3}\left(\mu-\mathrm{OCOCH}_{3}\right)_{4}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}\left(\mathrm{COOCMe}_{3}\right)_{2}\right)\right]$ [10], and $\left[\mathrm{Pd}_{3}\left(\mu-\mathrm{OCOCH}_{3}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)_{2}\left(\mathrm{~S}\left(\mathrm{CH}_{2} \mathrm{CHMe}_{2}\right)_{2}\right)_{2}\right][11]$.

The $\mathrm{Pd}_{2}\left(\mu-\mathrm{RCO}_{2}\right)$ fragments are planar within $0.229(2) \AA$ A. The CF_{3} groups in three of four carboxylate ligands display a high level of the rotational disorder. Each terminal Pd atom bears a terminal NOgroup and π-coordinated styrene molecule. The $\mathrm{Pd}-\mathrm{N}-\mathrm{O}$ angles lie within 112.8(5)-132.9(6) ${ }^{\circ}$ in two independent molecules, which corresponds to the sp^{2} hybridization of nitrogen atom. Therefore, the NO ligands present the monoanionic form. The $\mathrm{PhC}^{\alpha} \mathrm{H}=\mathrm{C}^{\beta} \mathrm{H}_{2}$ double bonds of the nearly planar styrene molecules are η^{2}-bonded

Fig. 3. The chains in the structure of IV formed by intermolecular Pd...Pd interactions. Fluorine and hydrogen atoms are omitted for clarity.

Fig. 4. The molecular structure of V. Hydrogen atoms is omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.
to the Pd atoms. A significant difference in $\mathrm{Pd}-\mathrm{C}^{\alpha}$ and $\mathrm{Pd}-\mathrm{C}^{\beta}$ distances was observed (2.232(5), 2.221(5) vs 2.381(5), 2.343(5) Å, respectively). The metal coordination resulted in a noticeable elongation of the $\mathrm{C}=\mathrm{C}$ bonds (1.353(7) and 1.362(7) \AA) in comparison to the value found in crystalline styrene (1.325(2) \AA) [12] . Within the molecule, two styrene ligands possess transoid mutual arrangement [6]. The cluster has a total electron count of 48 electrons $(=10 \times 3(\mathrm{Pd})+3 \times 4$ (carboxylate) $+1 \times 2$ (nitrosyl) $+2 \times 2$ (styrene); monoanionic terminal nitrosyls are considered as 1 electron donors). This corresponds to the 3-Pd 16-e cluster without any metal-metal bonds.

In contrast to well-known the extended metal atom chain complexes (EMACs) of Ni [13,14] and Co [15,16], the terminal palladium atoms in IV do not bear any axial ligands. Thus, the terminal Pd atoms may form additional intermolecular contacts. Actually, in crystal of IV, the adjacent molecules are combined into chains spread along the cell diagonal by weak Pd...Pd interactions (3.3490(6) \AA) (Fig. 3). Thus, the first step of the interaction of \mathbf{I} with alkenes (neohexene, styrene) completely suits (Scheme 1).

However, after crystals of IV were separated, the residual reaction mixture was concentrated (up to the oil formation) and kept in a fridge. Two days later, the black crystals formed. Their elemental analysis was in a good agreement with the total composition $\left[\mathrm{Pd}_{2}(\mathrm{NO})\right.$ $\left.\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CHPh}\right)_{2}\right]_{n}(\mathbf{V})$. The IR spectrum of \mathbf{V} does not contain the band at $1650-1730 \mathrm{~cm}^{-1}$ attributed to the terminal NO-group, but contains the band $1544 \mathrm{~cm}^{-1}\left(\nu(\mathrm{NO})\right.$ for bridging group). In the ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{V}, two symmetrical doublets ($\delta=5.28$ and 5.80 ppm ,
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$), quadruplet ($\delta=6.73 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$), and multiplet ($\delta=7.42 \mathrm{ppm}, \mathrm{C}_{6} \mathbf{H}_{\mathbf{5}} \mathrm{CH}=\mathrm{CH}_{2}$) were observed. In comparison with the free styrene molecule, all the signals in \mathbf{V} are shifted by $0.1-0.2 \mathrm{ppm}$ to the low field, which confirms the coordination of styrene molecule.

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for \mathbf{V}.

$\mathrm{Pd}(1)-\mathrm{N}(2)$	$1.883(4)$	$\mathrm{Pd}(3)-\mathrm{N}(1)$	$1.878(4)$
$\mathrm{Pd}(2)-\mathrm{N}(2)$	$1.889(4)$	$\mathrm{Pd}(4)-\mathrm{N}(1)$	$1.892(4)$
$\mathrm{N}(2)-\mathrm{O}(2)$	$1.173(5)$	$\mathrm{N}(1)-\mathrm{O}(1)$	$1.177(5)$
$\mathrm{Pd}(1)-\mathrm{Pd}(2)$	$2.9894(4)$	$\mathrm{Pd}(3)-\mathrm{Pd}(4)$	$2.9859(4)$
$\mathrm{Pd}(1)-\mathrm{Pd}(3)$	$2.7594(4)$	$\mathrm{Pd}(2)-\mathrm{Pd}(4)$	$2.7084(4)$
$\mathrm{Pd}(1)-\mathrm{Pd}(4)$	$2.8495(4)$	$\mathrm{Pd}(2)-\mathrm{Pd}(3)$	$2.8320(4)$
$\mathrm{Pd}(3)-\mathrm{O}(11)$	$2.081(3)$	$\mathrm{Pd}(1)-\mathrm{O}(12)$	$2.420(3)$
$\mathrm{Pd}(2)-\mathrm{O}(21)$	$2.065(3)$	$\mathrm{Pd}(4)-\mathrm{O}(22)$	$2.507(3)$
$\mathrm{Pd}(1)-\mathrm{O}(31)$	$2.088(3)$	$\mathrm{Pd}(3)-\mathrm{O}(32)$	$2.402(3)$
$\mathrm{Pd}(4)-\mathrm{O}(41)$	$2.060(3)$	$\mathrm{Pd}(2)-\mathrm{O}(42)$	$2.554(3)$
$\mathrm{Pd}(3)-\mathrm{C}(13)$	$2.341(4)$	$\mathrm{Pd}(3)-\mathrm{C}(14)$	$2.457(4)$
$\mathrm{Pd}(2)-\mathrm{C}(23)$	$2.319(4)$	$\mathrm{Pd}(2)-\mathrm{C}(24)$	$2.455(4)$
$\mathrm{Pd}(4)-\mathrm{C}(33)$	$2.314(4)$	$\mathrm{Pd}(4)-\mathrm{C}(34)$	$2.444(4)$
$\mathrm{Pd}(1)-\mathrm{C}(43)$	$2.368(4)$	$\mathrm{Pd}(1)-\mathrm{C}(44)$	$2.466(4)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.358(6)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.473(6)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.347(7)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.474(6)$
$\mathrm{C}(33)-\mathrm{C}(34)$	$1.358(7)$	$\mathrm{C}(34)-\mathrm{C}(35)$	$1.470(7)$
$\mathrm{C}(43)-\mathrm{C}(44)$	$1.362(7)$	$\mathrm{C}(44)-\mathrm{C}(45)$	$1.464(6)$
$\mathrm{Pd}(1)-\mathrm{N}(2)-\mathrm{Pd}(2)$	$104.84(17)$	$\mathrm{Pd}(3)-\mathrm{N}(1)-\mathrm{Pd}(4)$	$104.75(18)$
$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{Pd}(1)$	$128.1(3)$	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{Pd}(3)$	$128.2(3)$
$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{Pd}(2)$	$127.1(3)$	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{Pd}(4)$	$126.8(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$125.1(4)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$125.7(4)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$126.8(5)$	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	$124.2(4)$

Scheme 2. Possible steps formation of cluster \mathbf{V}.

The structure of \mathbf{V} was determined by the X -ray diffraction analysis (Fig. 4). In V, the central metal core represents the tetrahedron with the Pd-Pd distances varying within the range 2.7084(4)$2.9894(4) \AA$. Two opposite edged of this tetrahedron are occupied by nearly symmetrical bridging NO ligands. The $\mathrm{Pd}-\mathrm{N}$ bond lengths (1.878(4)-1.892(4) \AA) are somewhat shorter than those we have earlier found for the square-planar complex $\mathrm{Pd}_{4}(\mathrm{NO})_{2}\left({ }^{t} \mathrm{BuCO}_{2}\right)_{6}$ (1.903(6)-1.917(6) \AA) [5]. The two other edges of Pd_{4} polyhedron are engaged by four nonsymmetrical bridging $\mathrm{CF}_{3} \mathrm{CO}_{2}$. In two formed $\mathrm{Pd}_{2}\left(\mu-\mathrm{RCO}_{2}\right)_{2}$ subunits, the $\mathrm{Pd}-\mathrm{Pd}$ distances (2.7084(4) and 2.7594 (4) \AA) are the shortest ones among the known $\mathrm{Pd}-\mathrm{Pd}(\text { carboxylate })_{2}$. In all carboxylate ligands, the differences between the $\mathrm{Pd}-\mathrm{O}(n 1)$ and $\mathrm{Pd}-\mathrm{O}(n 2)$ distances ($n=1-4$, Table 2) are longer than $0.3 \AA$. Of interest, all $\mathrm{Pd}-\mathrm{O}(n 1)$ bonds lie opposite to the NO ligands in the coordination spheres of Pd atoms. As a result of this distortion, the $\mathrm{Pd}_{2}\left(\mu-\mathrm{RCO}_{2}\right)$ fragments are not planar and the $\mathrm{O}-\mathrm{Pd}-\mathrm{Pd}-\mathrm{O}$ torsion angles vary from $16.0(1)$ to $22.3(1)^{\circ}$. The rest two edges of the Pd_{4} tetrahedron $(\operatorname{Pd}(1)-\operatorname{Pd}(4)$ and $\operatorname{Pd}(2)-\operatorname{Pd}(3))$ are not occupied by any bridging ligands. In \mathbf{V}, the geometrical features of η^{2}-coordinated styrene molecule are similar to those found in structure IV.

Table 3
X-ray structure determination summary.

Compound	IV	V
Formula	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Pd}_{3}$	$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Pd}_{4}$
M	1039.59	1354.28
Crystal system	Triclinic	Monoclinic
Space group	$P-1$	Cc
a / \AA	$12.2228(16)$	$11.2255(5)$
b / \AA	$12.2745(16)$	$23.3335(11)$
c / \AA	$12.6023(17)$	$17.6671(8)$
$\alpha /^{\circ}$	$86.123(2)$	90
$\beta /{ }^{\circ}$	$82.101(2)$	$94.549(1)$
$\gamma /{ }^{\circ}$	$60.811(2)$	90
V / \AA°	$1635.0(4)$	$4613.0(4)$
Z	2	4
μ / mm^{-1}	1.755	1.639
Data collected	16,992	20,772
Unique data $\left(R_{\text {int }}\right)$	$7869(0.0244)$	$10,560(0.0226)$
$R_{1}[I>2 \sigma(I)]$	0.0406	0.0281
wR R_{2} (all data $)$	0.1043	0.0695

In complex \mathbf{V}, the $\mathrm{PdO}_{2} \mathrm{~N}$ fragments are T -shaped and point to square-planar, but the overall geometry of the Pd centres is very odd and difficult to classify. The Pd-Pd bonds would complete a typical 16-e configuration, but we have one additional ligand, the olefin. Therefore, the electron count at each individual Pd looks like 18 electrons. The cluster has the total electron count of 66 electrons $(=10 \times 4(\mathrm{Pd})+4 \times 3$ (carboxylate) $+2 \times 3$ (nitrosyl) $+4 \times 2$ (styrene); bridging nitrosyls are considered as 3 electron donors). This corresponds to a 4 -Pd 18 -e cluster with three Pd-Pd bonds in total $(4 \times 18-3 \times 2)$. Although there are some differences in the Pd-Pd bonds, they all range within 2.7084(4)-2.9894(4) Å. Thus, it appears that they are similar in fact, and cluster \mathbf{V} contains 6 equivalent $\mathrm{Pd}-\mathrm{Pd}$ interactions each with the 0.5 -bond order.

To the best of our knowledge, \mathbf{V} is the first example of the tetrahedral carboxylate cluster formed by 10 groups metal.

Apparently, the formation of complex \mathbf{V} includes the following steps: the action of excess styrene molecules leads to a splitting of trinuclear molecule IV into mononuclear fragment [$\left(\mathrm{PhCH}=\mathrm{CH}_{2}\right)$ $\left.(\mathrm{NO}) \mathrm{Pd}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right]$ and binuclear fragment $\left[\left(\mathrm{PhCH}=\mathrm{CH}_{2}\right)(\mathrm{NO}) \mathrm{Pd}(\mu-\right.$ $\left.\left.\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \operatorname{Pd}\left(\mathrm{PhCH}=\mathrm{CH}_{2}\right)\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\right]$ as the main building blocks. Steric hindrances in binuclear fragments resulted from styrene coordination requirements force these two fragments to be arranged perpendicularly. Finally, the transformation of the terminal NOgroups into the bridging ones yields complex \mathbf{V} (see Scheme 2).

3. Conclusion

We have described the reactivity of the linear trimer $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)_{2}$ (I) containing η^{2}-coordinated toluene molecule toward unsaturated hydrocarbons. The first step of the reaction of I with L ($\mathrm{L}=$ neohexene, styrene) includes the replacement of toluene to form the π complexes of general formula $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{L}\right)_{2}$. The cluster $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CHPh}\right)_{2}$ (IV) was characterized by the X-ray diffraction analysis. It represents a trinuclear nitrosyl carboxylate complex. It was shown that under the excess of styrene, complex IV transforms to $\mathrm{Pd}_{4}(\mu-\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHPh}\right)_{4}(\mathbf{V})$. According to the X-ray data, tetrahedral palladium cluster \mathbf{V} is the first representative of a new type of nitrosyl carboxylate complexes.

4. Experimental

4.1. General techniques and procedures

All organic solvents and liquid organic reagents were purified and dried according to standard procedures. The unsaturated hydrocarbon and gaseous olefins were commercially supplied. Complex $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)_{2} \quad$ I was prepared according to a described procedure [7]. Microanalyses performed on Carlo Erba Analyzer CHND-OEA 1108. IR spectra of solid samples in a region of $400-4000 \mathrm{~cm}^{-1}$ were recorded on a Zeiss SPECORD-M82 spectrophotometer. The samples of solid compounds were prepared as suspensions in Nujol. ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were recorded on a Bruker AVANCE 400 spectrometer with working frequencies of $400.13\left({ }^{1} \mathrm{H}\right)$ and internal deuterium stabilization at room temperature. The chemical shifts of ${ }^{1} \mathrm{H}$ nucleus are given relative to TMS. GS-MS investigation was carried out on an Agilent Technologies model 5973 instrument equipped with capillary column HP-1 using helium as a carrier gas and temperature of vaporizer $250^{\circ} \mathrm{C}$. Spectra were recorded using electron impact method.

4.2. Reaction I with ethylene or propylene

$0.4 \mathrm{~g}(0.04 \mathrm{mmol})$ complex I was dissolved in $20 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. Solution was placed in two-neck round-bottom 100 ml flask and stirred in $\mathrm{C}_{2} \mathrm{H}_{4}$ or $\mathrm{C}_{3} \mathrm{H}_{6}$ atmosphere for 12 h . The color changed from dark-vinous to pale-yellow and palladium black formation was observed. Palladium black was filtered off and organic products were identified by GS-MS.

4.3. Synthesis $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCMe}_{3}\right)_{2}$ (III)

$0.2 \mathrm{~g}(0.2 \mathrm{mmol})$ of complex $\mathbf{I}, 20 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $0.4 \mathrm{ml}(3.0 \mathrm{mmol})$ of neohexene were placed in round-bottom 50 ml flask. The color changed from dark-vinous to deep-brown. After 1 h a solution was evaporated on oil pump up to $5 \mathrm{ml}, 15 \mathrm{ml}$ hexane was added and green precipitate formed. The precipitate was filtered, washed with hexane (15 ml) and dried under vacuum. The yield is 56% based on palladium. Element analysis: found: C $23.65, \mathrm{H} 2.12, \mathrm{~N} 2.72 \%$; calc. for $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{CHCMe}_{3}\right)_{2}$: C $24.05, \mathrm{H} 2.42$, N. 2.81%. IR spectrum: $1680,1656,1408,1196,1152,976,844,792,728 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) 4.90\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) 5.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$.

4.4. Synthesis $\mathrm{Pd}_{3}(\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHPh}\right)_{2}$ (IV)

0.2 g (0.2 mmol) complex $\mathbf{I}, 20 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.35 \mathrm{ml}(3.0 \mathrm{mmol})$ styrene were placed in a round-bottom 50 ml flask. The reaction mixture was stirred for 1 h . The color changed from dark-vinous to deep-brown. The resulting solution was concentrated on an oil pump up to 10 ml . After that 5 ml of hexane was added and yellow prism crystals were obtained. The crystals were filtered under Ar atmosphere. The yield is 25% based on palladium. Element analysis: found: C 27.62, $\mathrm{H} 1.46, \mathrm{~N} 2.83 \%$; calc. for $\mathrm{Pd}_{3}\left(\mathrm{NO}_{2}\left(\mathrm{CF}_{3}\right.\right.$ $\left.\mathrm{CO}_{2}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{CHPh}\right)_{2}$: C 27.75, H $1.55, \mathrm{~N} 2.69 \%$. IR spectrum: 1720,1652 , $1336,1200,1157,820,808,728 \mathrm{~cm}^{-1}$.

4.5. Synthesis $\mathrm{Pd}_{4}(\mu-\mathrm{NO})_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHPh}\right)_{4}(\boldsymbol{V})$

After filtration of complex \mathbf{V}, the saturated solution was placed in the fridge cell at $-4^{\circ} \mathrm{C}$ for two days and brown block crystals
were obtained. Element analysis: found: C $35.51, \mathrm{H} 2.47, \mathrm{~N} 2.12 \%$; calc. for $\mathrm{Pd}_{4}(\mathrm{NO})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{CHPh}\right)_{4}$: C $35.50, \mathrm{H} 2.39, \mathrm{~N} 2.07 \%$. IR spectrum: 1648, 1544, 1424, 1196, 1168, 1140, 940, 920, 848, 792, $728,705 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 5.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) 5.80(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) 6.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}) 7.47\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

4.6. X-ray crystallography

Crystal data and details of the X-ray analyses are given in Table 3. All experimental datasets were collected on a Bruker SMART APEX II diffractometer using graphite monochromatized $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) at 150 K . Absorption corrections based on measurements of equivalent reflections were applied. The structures were solved by direct methods and refined by full-matrix least-squares on F^{2} with anisotropic thermal parameters for all non-hydrogen atoms [17] (except disordered trifluoromethyl and nitrosyl groups). In IV, three CF_{3} groups were found to be rotationally disordered over three positions with occupancy ratios 0.35 / $0.33 / 0.32,0.60 / 0.25 / 0.15$ and $0.52 / 0.28 / 0.20$. One NO ligand is also rotationally disordered over two positions ($0.53 / 0.47$). All hydrogen atoms were placed in calculated positions and refined using the riding model.

Acknowledgment

We are grateful to the Russian Foundation for Basic Research (the project No. 09-03-91284) and Presidium RAS program.

Appendix A. Supplementary material

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 772047 and 772048. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

[1] G. Allegra, G.T. Casagrande, A. Immirzi, L. Porri, G. Vitulli, J. Am. Chem. Soc. 92 (1970) 289
[2] G. Nardin, P. Delise, G. Allegra, Gazz. Chim. Ital. 105 (1975) 1047.
[3] M. Gorlov, A. Fisher, L. Kloo, J. Organomet. Chem. 689 (2004) 489
[4] M. Gorlov, A. Fisher, L. Kloo, Inorg. Chim. Acta 350 (2003) 449.
[5] T.A. Sromnova, D.V. Paschenko, L.I. Boganova, M.V. Daineko, S.B. Katser, A. V. Churakov, L.G. Kuz'mina, J.A.K. Howard, Inorg. Chim. Acta 350 (2003) 283.
[6] T.A. Stromnova, M.V. Dayneko, A.V. Churakov, L.G. Kuz'mina, J. Campora, P. Palma, E. Carmona, Inorg. Chim. Acta 359 (2006) 1613.
[7] R.E. Podobedov, T.A. Stromnova, Russ. J. Coord. Chem. 34 (10) (2008) 778.
[8] T.A. Stromnova, Russ. J. Inorg. Chem. 53 (13) (2008) 43.
[9] F.H. Allen, Acta Crystallogr. B58 (2002) 380.
[10] L.Yu. Ukhin, N.A. Dolgopolova, L.G. Kuz'mina, Yu.T. Struchkov, J. Organomet. Chem. 210 (1981) 263.
[11] Y. Fuchita, K. Takahashi, N. Kanehisa, K. Shinkimoto, Y. Kai, N. Kasai, Polyhedron 15 (1996) 2777.
[12] N. Yasuda, H. Uekusa, Y. Ohashi, Acta Crystallogr. E64 (2001) o1189.
[13] F.A. Cotton, H. Chao, C.A. Murillo, Q. Wang, Dalton Trans. (2006) 5416.
[14] F.A. Cotton, H. Chao, Z. Li, C.A. Murillo, Q. Wang, J. Organomet. Chem. 693 (2008) 1412.
[15] J.F. Berry, F.A. Cotton, C.A. Murillo, Organometallics 23 (2004) 2503.
[16] J.F. Berry, F.A. Cotton, C.S. Fewox, T. Lu, C.A. Murillo, X. Wang, Dalton Trans. (2004) 2297.
[17] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.

[^0]: * Corresponding author. N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian Federation. Tel.: +7 4959554844; fax: +74959541279.

 E-mail address: bambryounger@gmail.com (R.E. Podobedov).

